

NATIONAL INSTITUTE OF TECHNOLOGY JAMSHEDPUR DEPARTMENT OF PRODUCTION & INDUSTRIAL ENGINEERING

COURSE HANDOUT

Autumn Semester Session 2019-20 Date: 23/07/2019

Batch: M.Tech 1st Semester (Manufacturing Systems Engineering)

Course code: PI4107 Credits: 4 L T P: 3 1 0

Course Title: Manufacturing Strategies Instructor in-Charge: Dr. Dinesh Kumar

COURSE DESCRIPTION

- Introduction, Historical perspective of manufacturing management, Competitive priorities and operational Strategies, Functional area strategy and Capability, Case Study.
- Demand Forecasting: Introduction, Quantitative Methods introduction, Time series and moving averages method, Exponential Smoothing method, Regression Analysis Method, Qualitative Methods.
- Facility Design: Introduction and History, Product design and process selection, Capacity planning, Plant location and Plant layout.
- Inventory control: From EOQ to ROP, Independent Demand Inventory control and Economic Order Quantity (EOQ), Dynamic lot sizing, Statistical inventory control models.
- The MRP crusade: History, Need, Evolution, Dependent Demand and Material Requirement Planning (MRP), Structure of MRP system, MRP Calculations.
- The JIT revolution: Just-in-Time System: origin and goals, Characteristics of JIT Systems, Continuous Improvement, Kanban System, Strategic Implications of JIT System.
- Production Planning and Control: Shop floor Production scheduling,
- Aggregate planning, Aggregate and workforce planning
- Additional Topics to be covered: Lean, Agile and greed Manufacturing Approaches.

.....

COURSE OUTCOMES

CO1: Students will recognize the role of manufacturing strategies in a competitive scenario.

CO2: Students will identify various demand forecasting methods and solve real world demand forecasting problems.

CO3: Students will recognize the inventory control models and apply such models to solve complex inventory management problems.

CO4: Students will review the advanced production management methods including MRP aggregate planning and JIT production.

TEXT BOOKS

T1: Hiller, F. S. and Lieberman, G. J (2001), Introduction to operations Research, Tata McGraw-Hill, New Delhi, Seventh Edition.

T2: Chopra, S. and Meindl, P. (2004), Supply Chain Management: Strategy, Planning and Operation, PHI, New Delhi, Second Edition.

T3: Jeffrey Liker (2017), The Toyota Way, McGraw Hill Education; 1st Edition

REFERENCE BOOKS

R1: Martinich, J.S. (2010), Production and Operation Management: An Applied Modern Approach, Wiley India, Delhi.

R2: Y. Monden, (2011), Toyota production system: An integrated approach to Just-in-time, Taylor & Francis, New York, 4th Edition

INTERNET RESOURCES

*I*₁: Lean Manufacturing

https://www.sciencedirect.com/search/advanced?qs=lean%20manufacturing&origin=home&zone=qSearch&articleTypes=CH%2CREV&lastSelectedFacet=articleTypes

I₂: Agile Manufacturing

 $\frac{https://www.sciencedirect.com/search/advanced?qs=Agile\%20manufacturing\&articleTypes=REV\%2CCH\&show=25\&sortBy=relevance$

I₃: Green Manufacturing

https://www.sciencedirect.com/search/advanced?qs=green%20manufacturing&articleTypes=REV%2CCH&show =25&sortBy=relevance

COURSE PLAN

Lect.	Topics to be covered	Ref.		
No.				
1-3	Introduction, Historical perspective of manufacturing management, Competitive	R1 (CH-1&2)		
	priorities and operational Strategies, Functional area strategy and Capability, Case	and Research		
	Study.	Articles		
4-6	Demand Forecasting: Introduction, Quantitative Methods introduction, Time series	T1 (CH-20),		
	and moving averages method,	T2 (CH-20),		
7-9	Exponential Smoothing method, Regression Analysis Method	R1 (CH-4)		
10-11	Qualitative Methods	KI (CII-4)		
12-14	Facility Design: Introduction and History, Product design and process selection,	R1 (CH-6)		
	Capacity planning, Plant location and Plant layout	K1 (C11-0)		
15-18	Inventory control: From EOQ to ROP, Independent Demand Inventory control and	T1 (CH 10) D1		
	Economic Order Quantity (EOQ)	T1 (CH-19), R1		
19-21	Dynamic lot sizing, Statistical inventory control models.	(CH-13)		
22-25	The MRP crusade: History, Need, Evolution, Dependent Demand and Material	R1 (CH-14)		
	Requirement Planning (MRP), Structure of MRP system, MRP Calculations.	KI (CH-14)		
26-28	The JIT revolution: Just-in-Time System: origin and goals, Characteristics of JIT			
	Systems,	T3, R2		
29-31	Continuous Improvement, Kanban System, Strategic Implications of JIT System			
32-34	Production Planning and Control: Shop floor Production scheduling	T1 (CH-5,6&12)		
35-37	Aggregate planning, Aggregate and workforce planning	T2 (CH-8),		
		R1 (CH-12)		
38	Additional Topics to be covered: Lean, Agile and greed Manufacturing	I_1, I_2, I_3		
	Approaches	-, - , •		

EVALUATION SCHEME (EC)

EC No.	Evaluation Component	Duration	Weightage	Date & Time	Nature of Component
1.	Mid Semester	2 Hrs	30%	Refer to	Closed Book
2.	End Semester	3 Hrs.	50%	Academic calendar	Closed Book
3.	Internal Assessment		20%		

Consultation Hours: 4PM to 6PM (Monday to Friday) In CAD/CAM Lab of Manufacturing Dept. **Note**: All notices regarding the course will be displayed only on the Department of Manufacturing Engineering notice board.

Dr. Dinesh Kumar

Instructor In-Charge e-mail: dinesh.prod@nitjsr.ac.in