NATIONAL INSTITUTE OF TECHNOLOGY, JAMSHEDPUR ## JHARKHAND-831014 # **Department of Mechanical Engineering** SPRING SEMESTER 2019-2020 ### **COURSE – HANDOUT** Semester: 4thB.Tech. (Hons.) Branch: Mechanical Engg. Course No.: ME1403 Course Title: Steam Power System Instructor-in-charge: Dr. Prabha Chand ### **Course Descriptions:** Vapour Power Cycle: Analysis& Description. Fuels, Combustion, Flue Gas Analysis, Draught System, Furnaces & Combustion Equipment's Steam Generators: Construction and Working Principle, Circulation Theory, Boiler Mountings and Accessories. Nozzles and Diffusers: Definitions and Applications, Types, The Continuity Equation, Momentum Equation and Steady Flow Energy Equation for Steam Nozzles, Nozzle Efficiency, Critical Pressure. Steam Turbine: Principle of Operation, Classification, Compounding, Flow of Steam Through Impulse Turbine Blades, Flow of Steam through Impulse-Reaction Turbine Blades, ## Condensers & Cooling Towers Scope: - ➤ To provide the basic concept of Steam Power Plant from the Beginning of the Cycle to the End. - > To enhance the knowledge of Thermodynamics as the application part in SPS. - > To study about one of the most important part of the Mechanical Engineering as Thermal Engineering. ### **Objective:** - ➤ The course structure is so designed that the student will have the complete idea about steam power plant. - After completion of the course the student can be familiar and able to take up the practical project in the Industry. #### **Text Books:** T_1 – Engineering Thermodynamics by P.K. Nag T₂ – Steam Power Plant by P.K. Nag T₃ - Steam & Gas Turbines and Power Plant Engineering by Dr. R. Yadav #### **Reference Book:** R_{1} - Steam Plant Operation by E.B. Woodruff , H.B. Lammers & T.F. Lammers Course Plan: | Lecture no. | Learning Objectives | Topics to be Covered | Refer to
Chapter | |-------------|---|--------------------------|---------------------| | 1-5 | Analysis of Steam Power Cycle, Reheat Cycle, | Vapour Power Cycle | T ₁ -12 | | | Regenerative Cycle, Binary Vapour Cycle | | | | 6-9 | Types of Fuels for Boilers, Stoichiometric and Excess Air-Fuel Ratio, Flue Gas Analysis | Fuels, Combustion | T ₃ -5 | | 10-12 | Introduction, Purpose, Natural & Forced Draught System in a Boiler. | Draught System | T ₃ -5 | | 13-14 | Classification, Construction and Working
Principle of Different Boilers | Steam Generator | T ₃ -6 | | 15-18 | Circulation Theory, Down-comers and Risers,
Boiler drum and its internals, Boiler Mountings
and Accessories. | Boiler Theory & Parts | T ₃ -6 | | 19-23 | Applications, Types of Nozzles and Diffusers,
Energy Equations, Nozzle Efficiency, Critical
Pressure in Nozzle Flow or Choked Flow | Nozzles and Diffusers | T ₃ -7 | | 24-30 | Principle of Operation of Steam Turbine, Classification, Compounding of Turbine, Difference between Impulse and Reaction Turbine. | Steam Turbine | T ₃ -8 | | 31-35 | Velocity Diagrams for Impulse Turbine,
Combination of Vector Diagram, Forces on the
Blades and Work done by Blades, Force, Work,
Power, Blade or Diagram Efficiency, Axial Thrust
on the Rotor, Gross Stage Efficiency, Energy
Converted to Heat by Blade Friction | Impulse Turbine | T ₃ -9 | | 36-39 | Velocity Diagrams and Work Done, Degree of Reaction, Parsons Reaction Turbine. | Impulse-Reaction Turbine | T ₃ -10 | | 40-43 | Function of a Condenser, Elements of Cooling
System, Types of Condensers. Self-Study: Design
Aspect of Surface Condenser, Deaeration,
Circulating Water System, Once – Through and
Closed Loop Cooling System. | Condenser | T ₃ -16 | | 44-46 | Types of Cooling Tower-Wet and Dry Cooling
Towers, Natural Draught Cooling Towers And
Mechanical Draught Cooling Tower | Cooling Tower | T ₃ -16 | # **Evaluation Scheme:** | EC
No. | Evaluation
Component | Duration | Weightages | Date & Time | Nature of the
Component | |-----------|-------------------------|----------|------------|-------------|-----------------------------| | 1. | Mid term Exam | 2 Hrs | 30% | | Closed Book | | 3. | End Sem Exam | 3 Hrs | 50% | | Closed Book | | 4. | Assignment | | 10% | | Take Home | | 5. | Surprises Quizzes | 5 Min. | 10% | | Closed Book(Best 5 out of 7 | Chamber consultation hour: Friday 7th Hour; Chamber **Notices:** All notices regarding the course will be displayed only on the **Department of Mechanical Engineering** notice board.