
RHK.S96 1

Lecture 12: Dynamic Branch
Prediction, Superscalar, VLIW, and

Software Pipelining

Professor Randy H. Katz
Computer Science 252

Spring 1996

RHK.S96 2

Review: Tomasulo Summary

• Registers not the bottleneck
• Avoids the WAR, WAW hazards of Scoreboard
• Not limited to basic blocks (provided branch

prediction)
• Allows loop unrolling in HW
• Lasting Contributions

– Dynamic scheduling
– Register renaming
– Load/store disambiguation

• Next: More branch prediction

RHK.S96 3

Dynamic Branch Prediction

• Performance = ƒ(accuracy, cost of misprediction)
• Branch History Table is simplest

– Lower bits of PC address index table of 1-bit values
– Says whether or not branch taken last time

• Problem: in a loop, 1-bit BHT will cause two
mispredictions:

– End of loop case, when it exits instead of looping as before
– First time through loop on next time through code, when it

predicts exit instead of looping

RHK.S96 4

Dynamic Branch Prediction

• Solution: 2-bit scheme where change prediction
only if get misprediction twice: (Figure 4.13, p. 264)

T

T

T

T

NT

NT

NT

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
Taken

RHK.S96 5

BHT Accuracy

• Mispredict because either:
– Wrong guess for that branch
– Got branch history of wrong branch when index the table

• 4096 entry table programs vary from 1%
misprediction (nasa7, tomcatv) to 18%
(eqntott), with spice at 9% and gcc at 12%

• 4096 about as good as infinite table, but 4096
is a lot of HW

RHK.S96 6

Correlating Branches

Idea: taken/not taken
of recently executed
branches is related to
behavior of next
branch (as well as the
history of that branch
behavior)

– Then behavior of recent
branches selects
between, say, four
predictions of next
branch, updating just that
prediction

Branch address

2-bits per branch predictors

Prediction

2-bit global branch history

RHK.S96 7

F
re

q
u
e
n
c
y
 o

f
M

is
p
re

d
ic

ti
o
n
s

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

na
sa

7

m
a
tr

ix
3

0
0

to
m

ca
tv

do
du

cd

sp
ic

e

fp
p
p
p

gc
c

es
p
re

ss
o

eq
nt

ot
t li

0%

1%

5%

6% 6%

11%

4%

6%

5%

1%

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

Accuracy of Different Schemes
(Figure 4.21, p. 272)

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

0%

18%

F
re

q
u

en
cy

 o
f

M
is

p
re

d
ic

ti
o

n
s

RHK.S96 8

Need Address
@ Same Time as Prediction

• Branch Target Buffer (BTB): Address of branch index
to get prediction AND branch address (if taken)

– Note: must check for branch match now, since can’t use wrong
branch address (Figure 4.22, p. 273)

Predicted PC
Branch Prediction:
Taken or not Taken

RHK.S96 9

Getting CPI < 1: Issuing
Multiple Instructions/Cycle

• Two variations
• Superscalar: varying no. instructions/cycle (1 to

8), scheduled by compiler or by HW (Tomasulo)
– IBM PowerPC, Sun SuperSparc, DEC Alpha, HP 7100

• Very Long Instruction Words (VLIW): fixed
number of instructions (16) scheduled by the
compiler

– Joint HP/Intel agreement in 1998?

RHK.S96 10

Getting CPI < 1: Issuing
Multiple Instructions/Cycle

• Superscalar DLX: 2 instructions, 1 FP & 1 anything else
– Fetch 64-bits/clock cycle; Int on left, FP on right
– Can only issue 2nd instruction if 1st instruction issues
– More ports for FP registers to do FP load & FP op in a pair

Type PipeStages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

• 1 cycle load delay expands to 3 instructions in SS
– instruction in right half can’t use it, nor instructions in next slot

RHK.S96 11

Unrolled Loop that Minimizes
Stalls for Scalar

1 Loop: LD F0,0(R1)
2 LD F6,-8(R1)
3 LD F10,-16(R1)
4 LD F14,-24(R1)
5 ADDD F4,F0,F2
6 ADDD F8,F6,F2
7 ADDD F12,F10,F2
8 ADDD F16,F14,F2
9 SD 0(R1),F4
10 SD -8(R1),F8
11 SD -16(R1),F12
12 SUBI R1,R1,#32
13 BNEZ R1,LOOP
14 SD 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

LD to ADDD: 1 Cycle
ADDD to SD: 2 Cycles

RHK.S96 12

Loop Unrolling in Superscalar
Integer instruction FP instruction Clock cycle

Loop: LD F0,0(R1) 1
LD F6,-8(R1) 2
LD F10,-16(R1) ADDD F4,F0,F2 3
LD F14,-24(R1) ADDD F8,F6,F2 4
LD F18,-32(R1) ADDD F12,F10,F2 5
SD 0(R1),F4 ADDD F16,F14,F2 6
SD -8(R1),F8 ADDD F20,F18,F2 7
SD -16(R1),F12 8
SD -24(R1),F16 9
SUBI R1,R1,#40 10
BNEZ R1,LOOP 11
SD -32(R1),F20 12

• Unrolled 5 times to avoid delays (+1 due to SS)
• 12 clocks, or 2.4 clocks per iteration

RHK.S96 13

Dynamic Scheduling in Superscalar

• Dependencies stop instruction issue
• Code compiler for scalar version will run poorly on SS

– May want code to vary depending on how superscalar

• Simple approach: separate Tomasulo Control for
separate reservation stations for Integer FU/Reg and
for FP FU/Reg

RHK.S96 14

Dynamic Scheduling in Superscalar

• How to do instruction issue with two instructions and
keep in-order instruction issue for Tomasulo?

– Issue 2X Clock Rate, so that issue remains in order
– Only FP loads might cause dependency between integer and FP

issue:
» Replace load reservation station with a load queue;

operands must be read in the order they are fetched
» Load checks addresses in Store Queue to avoid RAW violation
» Store checks addresses in Load Queue to avoid WAR,WAW

RHK.S96 15

Performance of Dynamic SS
Iteration Instructions Issues Executes Writes result
no. clock-cycle number
1 LD F0,0(R1) 1 2 4
1 ADDD F4,F0,F2 1 5 8
1 SD 0(R1),F4 2 9
1 SUBI R1,R1,#8 3 4 5
1 BNEZ R1,LOOP 4 5
2 LD F0,0(R1) 5 6 8
2 ADDD F4,F0,F2 5 9 12
2 SD 0(R1),F4 6 13
2 SUBI R1,R1,#8 7 8 9
2 BNEZ R1,LOOP 8 9

≈ 4 clocks per iteration
Branches, Decrements still take 1 clock cycle

RHK.S96 16

Limits of Superscalar

• While Integer/FP split is simple for the HW, get CPI of
0.5 only for programs with:

– Exactly 50% FP operations
– No hazards

• If more instructions issue at same time, greater
difficulty of decode and issue

– Even 2-scalar => examine 2 opcodes, 6 register specifiers, & decide
if 1 or 2 instructions can issue

• VLIW: tradeoff instruction space for simple decoding
– The long instruction word has room for many operations
– By definition, all the operations the compiler puts in the long

instruction word can execute in parallel
– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide
– Need compiling technique that schedules across several branches

RHK.S96 17

Loop Unrolling in VLIW
Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
LD F0,0(R1) LD F6,-8(R1) 1
LD F10,-16(R1) LD F14,-24(R1) 2
LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3
LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5

SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6
SD -16(R1),F12 SD -24(R1),F16 7
SD -32(R1),F20 SD -40(R1),F24 SUBI R1,R1,#48 8
SD -0(R1),F28 BNEZ R1,LOOP 9

• Unrolled 7 times to avoid delays
• 7 results in 9 clocks, or 1.3 clocks per iteration
• Need more registers in VLIW

RHK.S96 18

Limits to Multi-Issue Machines

• Inherent limitations of ILP
– 1 branch in 5 instructions => how to keep a 5-way VLIW busy?
– Latencies of units => many operations must be scheduled
– Need about Pipeline Depth x No. Functional Units of independent

operations to keep machines busy

• Difficulties in building HW
– Duplicate FUs to get parallel execution
– Increase ports to Register File (VLIW example needs 6 read and 3

write for Int. Reg. & 6 read and 4 write for FP reg)
– Increase ports to memory
– Decoding SS and impact on clock rate, pipeline depth

RHK.S96 19

Limits to Multi-Issue Machines

• Limitations specific to either SS or VLIW
implementation

– Decode issue in SS
– VLIW code size: unroll loops + wasted fields in VLIW
– VLIW lock step => 1 hazard & all instructions stall
– VLIW & binary compatibility is practical weakness

RHK.S96 20

Software Pipelining
• Observation: if iterations from loops are independent,

then can get ILP by taking instructions from different
iterations

• Software pipelining: reorganizes loops so that each
iteration is made from instructions chosen from different
iterations of the original loop (≈ Tomasulo in SW)

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Software-
pipelined
iteration

RHK.S96 21

SW Pipelining Example

Before: Unrolled 3 times
 1 LD F0,0(R1)
 2 ADDD F4,F0,F2
 3 SD 0(R1),F4
 4 LD F6,-8(R1)
 5 ADDD F8,F6,F2
 6 SD -8(R1),F8
 7 LD F10,-16(R1)
 8 ADDD F12,F10,F2
 9 SD -16(R1),F12
 10 SUBI R1,R1,#24
 11 BNEZ R1,LOOP

After: Software Pipelined
LD F0,0(R1)
ADDD F4,F0,F2
LD F0,-8(R1)

 1 SD 0(R1),F4; Stores M[i]
 2 ADDD F4,F0,F2; Adds to M[i-1]
 3 LD F0,-16(R1); loads M[i-2]
 4 SUBI R1,R1,#8
 5 BNEZ R1,LOOP

SD 0(R1),F4
ADDD F4,F0,F2
SD -8(R1),F4

IF ID EX Mem WB
 IF ID EX Mem WB
 IF ID EX Mem WB

SD
ADDD
LD

Read F4
Write F4

Read F0

Write F0

RHK.S96 22

SW Pipelining Example

Symbolic Loop Unrolling
– Less code space
– Overhead paid only once
 vs. each iteration in loop unrolling

Software Pipelining

Loop Unrolling

100 iterations = 25 loops with 4 unrolled iterations each

RHK.S96 23

Summary

• Branch Prediction
– Branch History Table: 2 bits for loop accuracy
– Correlation: Recently executed branches correlated with next branch
– Branch Target Buffer: include branch address & prediction

• Superscalar and VLIW
– CPI < 1
– Dynamic issue vs. Static issue
– More instructions issue at same time, larger the penalty of hazards

• SW Pipelining
– Symbolic Loop Unrolling to get most from pipeline with little code

expansion, little overhead

