Lecture 12: Dynamic Branch
Prediction, Superscalar, VLIW, and
Software Pipelining

Professor Randy H. Katz
Computer Science 252
Spring 1996

RHK.S96 1

Review: Tomasulo Summary

Registers not the bottleneck
Avoids the WAR, WAW hazards of Scoreboard

Not limited to basic blocks (provided branch
prediction)

Allows loop unrolling in HW

Lasting Contributions

— Dynamic scheduling
— Register renaming
— Load/store disambiguation

Next: More branch prediction

RHK.S96 2

Dynamic Branch Prediction

 Performance = f(accuracy, cost of misprediction)

« Branch History Table is simplest

— Lower bits of PC address index table of 1-bit values
— Says whether or not branch taken last time

 Problem: in aloop, 1-bit BHT will cause two
mispredictions:
— End of loop case, when it exits instead of looping as before

— First time through loop on next time through code, when it
predicts exit instead of looping

RHK.S96 3

Dynamic Branch Prediction

o Solution: 2-bit scheme where change prediction
only if get misprediction twice: (Figure 4.13, p. 264)

Predict Tak

Predict N
Taken

RHK.S96 4

BHT Accuracy

 Mispredict because either:

— Wrong guess for that branch

— Got branch history of wrong branch when index the table
e 4096 entry table programs vary from 1%

misprediction (nasa7, tomcatv) to 18%
(egntott), with spice at 9% and gcc at 12%

e 4096 about as good as infinite table, but 4096
Is a lot of HW

RHK.S96 5

Correlating Branches

|dea: taken/not taken
of recently executed
branches is related to
behavior of next
branch (as well as the

history of that branch o
behavior) — | [N Bl Prediction

Branch address

da

2-bits per branch predictors

— Then behavior of recent
branches selects

between, say, four
predictions of next EL\
branch, updating just that

[T 1

prediction

2-bit global branch history

RHK.S96 6

Accuracy of Different Schemes

(Figure 4.21, p. 272)
18% -+

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

16% —+
14% —+
12% +
" 10% +
8% -+
6% -+
4% —+
2% +

0% -

Frequency of Mispredictions

nasa’
matrix300
tomcatv
doducd
spice
fpppp

gcc
espresso
egntott

| 4,096 entries: 2-bits per entry B unlimited entries: 2-bits/entry [| 1,024 entries (2,2)

~K.S96 7

Need Address
@ Same Time as Prediction

 Branch Target Buffer (BTB): Address of branch index
to get prediction AND branch address (if taken)

— Note: must check for branch match now, since can’t use wrong
branch address (Figure 4.22, p. 273)

_ Branch Prediction:
Predicted PC aken or not Taken

Tedzed Mo

A plmE i i

un: Eoer L clan s bar Wtz ored zizd
Pl thoud b adatihe =k S0

RHK.S96 8

Getting CPI < 1: Issuing
Multiple Instructions/Cycle

e Two variations

e Superscalar: varying no. instructions/cycle (1 to
8), scheduled by compiler or by HW (Tomasulo)

— IBM PowerPC, Sun SuperSparc, DEC Alpha, HP 7100

e Very Long Instruction Words (VLIW): fixed
number of instructions (16) scheduled by the
compiler

— Joint HP/Intel agreement in 19987

RHK.S96 9

Getting CPI < 1: Issuing
Multiple Instructions/Cycle

o Superscalar DLX: 2 instructions, 1 FP & 1 anything else
— Fetch 64-bits/clock cycle; Int on left, FP on right
— Can only issue 2nd instruction if 1st instruction issues
— More ports for FP registers to do FP load & FP op in a pair

Type PipeStages

Int. instruction 1= ID EX MEM WB

FP instruction |F ID EX MEM WB

Int. instruction IF ID EX MEM WB

FP instruction |F ID EX MEM WB

Int. instruction IF ID EX MEM WB
FP instruction 1= ID EX MEM WB

« 1 cycleload delay expands to 3 instructions in SS

— instruction in right half can’t use it, nor instructions in next slot
RHK.S96 10

Unrolled Loop that Minimizes
Stalls for Scalar

1 Loop: LD
2 LD
3 LD
4 LD
) ADDD
6 ADDD
7 ADDD
8 ADDD
9 SD
10 SD
11 SD
12 SUBI
13 BNEZ
14 SD

FO, O(R1) LD to ADDD: 1 Cycle
F6, - 8(R1) ADDD to SD: 2 Cycles
F10, - 16(R1)

F14, - 24(R1)

F4, FO, F2

F8, F6, F2

F12, F10, F2

F16, F14, F2

O(R1), F4

-8(R1), F8

-16(R1), F12

R1, R1, #32

R1, LOOP

8(R1), F16 : 8-32 = -24

14 clock cycles, or 3.5 per iteration

RHK.S96 11

Loop Unrolling in Superscalar

Integer instruction

Loop: LD
LD
LD
LD
LD
SD
SD
SD
SD

SUBI

FP instruction

F6,-8(R1)

F10,-16(R1) ADDD F4{FO)F2
F14,-24(R1) ADPD F8,F6,F2
F18,-32(R1) ADDD F12,F10,F2
O(R1)F4) ADDD F16,F14,F2
-8(R1),F8 ADDD F20,F18,F2
-16(R1),F12
-24(R1),F16

R1,R1,#40

BNEZ R1,LOOP

SD

-32(R1),F20

Clock cycle

© 0 NO Ol A WDN P

P
R O

12

 Unrolled 5 times to avoid delays (+1 due to SS)

12 clocks, or 2.4 clocks per iteration

RHK.S96 12

Dynamic Scheduling in Superscalar

 Dependencies stop instruction issue

« Code compiler for scalar version will run poorly on SS
— May want code to vary depending on how superscalar

 Simple approach: separate Tomasulo Control for
separate reservation stations for Integer FU/Reg and

for FP FU/Reg

RHK.S96 13

Dynamic Scheduling in Superscalar

e How to do instruction issue with two instructions and
keep in-order instruction issue for Tomasulo?
— Issue 2X Clock Rate, so that issue remains in order

— Only FP loads might cause dependency between integer and FP
issue:

» Replace load reservation station with aload queue;
operands must be read in the order they are fetched

» Load checks addresses in Store Queue to avoid RAW violation
» Store checks addresses in Load Queue to avoid WAR,WAW

RHK.S96 14

Performance of Dynamic SS

Iteration Instructions Issues Executes Writes result
no. clock-cycle number

1 LD FO,0(R1) 1 2 4
1 ADDD F4,F0,F2 1 5 8
1 SD O0(R1),F4 2 9

1 SUBI R1,R1,#8 3 4 5
1 BNEZ R1,LOOP 4 5

2 LD FO,0(R1) 5 6 8
2 ADDD F4,F0,F2 5 9 12
2 SD O0(R1),F4 6 13

2 SUBI R1,R1,#8 7 8 9
2 BNEZ R1,LOOP 8 9

» 4 clocks per iteration
Branches, Decrements still take 1 clock cycle

RHK.S96 15

Limits of Superscalar

 While Integer/FP split is simple for the HW, get CPI of
0.5 only for programs with:
— Exactly 50% FP operations
— No hazards

* If more instructions issue at same time, greater
difficulty of decode and issue

— Even 2-scalar => examine 2 opcodes, 6 register specifiers, & decide
If 1 or 2 instructions can issue

 VLIW: tradeoff instruction space for simple decoding

— The long instruction word has room for many operations

— By definition, all the operations the compiler puts in the long
instruction word can execute in parallel

— E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch
» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide

— Need compiling technique that schedules across several branches
RHK.S96 16

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operationl op. 2 branch
LD FO,0(R1) LD F6,-8(R1) 1
LD F10,-16(R1) L = 2
LD F18,-32(R1) LD F22,-40(R1) ADDD F4,FO,F2 ADDD F8,F6,F2 3
LD F26,-48(R1) D F12,F10,F2 ADDD F16,F14,F2 4
ADDD F20,F18,F2 ADDD F24,F22,F2 5
SD 0(R1),F SD -8(R1),F8 ADDD F28,F26,F2 6
SD -16(R1),F12 SD -24(R1),F16 7
SD -32(R1),F20 SD -40(R1),F24 SuBIl R1,R1,#48 8
SD -0(R1),F28 BNEZ R1,LOOP 9
e Unrolled 7 times to avoid delays
e 7 results in 9 clocks, or 1.3 clocks per iteration
 Need more registers in VLIW RHK.S96 17

Limits to Multi-Issue Machines

 Inherent limitations of ILP

— 1 branch in 5 instructions => how to keep a 5-way VLIW busy?
— Latencies of units => many operations must be scheduled

— Need about Pipeline Depth x No. Functional Units of independent
operations to keep machines busy

 Difficulties in building HW
— Duplicate FUs to get parallel execution

— Increase ports to Register File (VLIW example needs 6 read and 3
write for Int. Reqg. & 6 read and 4 write for FP req)

— Increase ports to memory
— Decoding SS and impact on clock rate, pipeline depth

RHK.S96 18

Limits to Multi-Issue Machines

e Limitations specific to either SS or VLIW
Implementation
— Decode issue in SS
— VLIW code size: unroll loops + wasted fields in VLIW
— VLIW lock step => 1 hazard & all instructions stall
— VLIW & binary compatibility is practical weakness

RHK.S96 19

Software Pipelining

 Observation: if iterations from loops are independent,
then can get ILP by taking instructions from different
iterations

o Software pipelining: reorganizes loops so that each
iteration is made from instructions chosen from different
iterations of the original loop (» Tomasulo in SW)

[teration

0 Iteration

1 Iteration

2 Iteration

3 Iteration
4

Software-
pipelined
iteration

RHK.S96 20

SW Pipelining Example

Before: Unrolled 3times After: Software Pipelined

1 LD FO, O(Rl) LD FO, O(R1)
2 ADDD F4, FO, F2 ADDD F4, FO, F2
3 SD O(R1),F4 LD FO, - 8(Rl)
4 LD F6, - 8(Rl)\ 1 SD O(R1), F4; Stores Mi]
5 ADDD F8,F6,F2 —=2 ADDD F4, FO, F2; Adds to Mi -1]
6 SD -8(R1),F8 /3 LD FO,-16(R1l): loads Mi - 2]
7 LD F10,-16(R1) 4 SUBI R1,R1,#8
8 ADDD F12, F10, F2 5 BNEZ R1, LOOP
9 SD -16(R1), F12 SD O(R1l), F4
10 SUBI RI1, R1, #24 ADDD F4, FO, F2
11 BNEZ R1, LOOP SD -8(Rl), F4
Read F4 Read FO

SD | 1D EX/me VB \Write F4

ADDD |F I D EX Mem \WB

LD | 1D EX Mem \WB

Write Iﬁ(RHK.S96 21

SW Pipelining Example

Symbolic Loop Unrolling

— Less code space
— Overhead paid only once
vs. each iteration in loop unrolling

Software Pipelining

Hun 4

Tealapzed | £ G
- - " -
Al L i I

=] “odibre poatirag in:

Hun 4

Loop Unrolling
soalapced .-":

" -'- " -'- o

" - L - O - L -

- - = - - - = - s

" - - - - o - - - - - - o -

- - - " - - - - - - " - - " -
-u"’.l. I.rm o o " - o " - o o L L I s "L - " .
\< ‘ \‘\Illlpl.rnl 0 ni-

100 iterations = 25 loops with 4 unrolled iterations each

RHK.S96 22

Summary

e Branch Prediction

— Branch History Table: 2 bits for loop accuracy
— Correlation: Recently executed branches correlated with next branch
— Branch Target Buffer: include branch address & prediction

e Superscalar and VLIW
— CPI<1
— Dynamic issue vs. Static issue
— More instructions issue at same time, larger the penalty of hazards

« SW Pipelining

— Symbolic Loop Unrolling to get most from pipeline with little code
expansion, little overhead

RHK.S96 23

