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Measurement and Evaluation

Design

AnalysisAnalysis

Architecture is an iterative process:
• Searching the space  of possible designs
• At all levels of computer systems

Creativity

Good IdeasGood Ideas

Mediocre Ideas
Bad Ideas

Cost /
Performance
Analysis
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Measurement Tools

• Benchmarks, Traces, Mixes
• Cost, delay, area, power estimation
• Simulation  (many  levels)

– ISA, RT, Gate, Circuit

• Queuing Theory
• Rules of Thumb
• Fundamental Laws
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The Bottom Line: 
Performance (and Cost)

• Time to run the task  (ExTime)
– Execution time, response time, latency

• Tasks per day, hour, week, sec, ns … (Performance)
– Throughput, bandwidth

Plane

Boeing 747

BAD/Sud 
Concodre

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput 
(pmph)

286,700

178,200
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The Bottom Line: 
Performance (and Cost)

"X is n times faster than Y"  means

ExTime(Y)      Performance(X)  

---------  =  ---------------

ExTime(X)      Performance(Y)

• Speed of Concorde vs. Boeing 747

• Throughput of Boeing 747 vs. Concorde
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Performance Terminology

“X is n% faster than Y”  means:
ExTime(Y) Performance(X)               n

  --------- = --------------  =  1   +   -----

ExTime(X) Performance(Y)              100

   n = 100(Performance(X) - Performance(Y))

                Performance(Y)

Example: Y takes 15 seconds to complete a task, 
X takes 10 seconds. What % faster is X?
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Example

15
10

= 1.5
1.0

= Performance (X)
Performance (Y)

ExTime(Y)
ExTime(X)

=

n = 100 (1.5  -  1.0)
          1.0

n = 50%
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Amdahl's Law
Speedup due to enhancement E:
                              ExTime w/o E        Performance w/  E
Speedup(E) = -------------   =   -------------------

              ExTime w/  E        Performance w/o E

Suppose that enhancement E accelerates a fraction F 
of the task by a factor S, and the remainder of the 
task is unaffected, then:

ExTime(E)  =

Speedup(E) =
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Amdahl’s Law

ExTimenew = ExTimeold x   (1 - Fractionenhanced) +  Fractionenhanced

Speedupoverall   =
ExTimeold

ExTimenew

Speedupenhanced

=

1

(1 - Fractionenhanced) +  Fractionenhanced

Speedupenhanced
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Amdahl’s Law

• Floating point instructions improved to run 2X; 
but only 10% of actual instructions are FP

Speedupoverall =

ExTimenew =
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Amdahl’s Law

• Floating point instructions improved to run 2X; 
but only 10% of actual instructions are FP

Speedupoverall = 1

0.95
= 1.053

ExTimenew = ExTimeold x  (0.9 +  .1/2) = 0.95 x ExTimeold
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Corollary: Make The 
Common Case Fast

• All instructions require an instruction fetch, 
only a fraction require a data fetch/store.

– Optimize instruction access over data access

• Programs exhibit locality
Spatial Locality                        Temporal Locality

• Access to small memories is faster
– Provide a storage hierarchy   such that the most frequent 

accesses are to the smallest (closest) memories.

Reg's
Cache

Memory Disk / Tape
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Occam's Toothbrush

• The simple case is usually the most frequent 
and the easiest to optimize!

• Do simple, fast things in hardware and be sure 
the rest can be handled correctly in software
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Metrics of Performance

Compiler

Programming 
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

(millions) of Instructions per second: MIPS
(millions) of (FP) operations per second: MFLOP/s

Cycles per second (clock rate)

Megabytes per second

Answers per month
Operations per second
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Aspects of CPU Performance
CPU time =  Seconds     =   Instructions  x     Cycles     x   Seconds

    Program     Program          Instruction        Cycle

   Instr. Cnt    CPI      Clock Rate
Program

Compiler

Instr. Set

Organization

Technology
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Marketing Metrics

MIPS = Instruction Count / Time * 10^6 = Clock Rate / CPI * 10^6

•  Machines with different instruction sets ?

•  Programs with different instruction mixes ? 

–  Dynamic frequency of instructions

• Uncorrelated with performance

MFLOP/s = FP Operations / Time * 10^6

•  Machine dependent

•  Often not where time is spent
Normalized:

add,sub,compare,mult   1

divide, sqrt         4

exp, sin, . . .         8
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Cycles Per Instruction

CPU time = CycleTime *  ∑  CPI    *  I
i  = 1

n

i i

CPI  =  ∑  CPI    *    F          where   F    =             I    
i  = 1

n

i i i i

Instruction Count

“Instruction Frequency”

Invest Resources where time is Spent!

CPI = Instruction Count / (CPU Time * Clock Rate)
= Instruction Count / Cycles

“Average Cycles per Instruction”
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Organizational Trade-offs

Instruction Mix

Cycle Time

CPI

Compiler

Programming 
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units
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Example: Calculating CPI

Typical Mix

Base Machine (Reg / Reg)
Op Freq Cycles CPI(i) (% Time)
ALU 50% 1  .5 (33%)
Load 20% 2  .4 (27%)
Store 10% 2  .2 (13%)
Branch 20% 2  .4 (27%)
 1.5
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Base Machine (Reg / Reg)
Op Freq Cycles
ALU 50% 1
Load 20% 2
Store 10% 2
Branch 20% 2

Typical Mix

Example
Add register / memory operations:

– One source operand in memory
– One source operand in register
– Cycle count of 2

Branch cycle count to increase to 3.

What fraction of the loads must be eliminated for this 
to pay off?


