
RHK.S96 1

Lecture 3: Architectural Performance
Laws and Rules of Thumb

Prof. Randy H. Katz
Computer Science 252

Spring 1996

RHK.S96 2

Measurement and Evaluation

Design

AnalysisAnalysis

Architecture is an iterative process:
• Searching the space of possible designs
• At all levels of computer systems

Creativity

Good IdeasGood Ideas

Mediocre Ideas
Bad Ideas

Cost /
Performance
Analysis

RHK.S96 3

Measurement Tools

• Benchmarks, Traces, Mixes
• Cost, delay, area, power estimation
• Simulation (many levels)

– ISA, RT, Gate, Circuit

• Queuing Theory
• Rules of Thumb
• Fundamental Laws

RHK.S96 4

The Bottom Line:
Performance (and Cost)

• Time to run the task (ExTime)
– Execution time, response time, latency

• Tasks per day, hour, week, sec, ns … (Performance)
– Throughput, bandwidth

Plane

Boeing 747

BAD/Sud
Concodre

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

RHK.S96 5

The Bottom Line:
Performance (and Cost)

"X is n times faster than Y" means

ExTime(Y) Performance(X)

--------- = ---------------

ExTime(X) Performance(Y)

• Speed of Concorde vs. Boeing 747

• Throughput of Boeing 747 vs. Concorde

RHK.S96 6

Performance Terminology

“X is n% faster than Y” means:
ExTime(Y) Performance(X) n

 --------- = -------------- = 1 + -----

ExTime(X) Performance(Y) 100

 n = 100(Performance(X) - Performance(Y))

 Performance(Y)

Example: Y takes 15 seconds to complete a task,
X takes 10 seconds. What % faster is X?

RHK.S96 7

Example

15
10

= 1.5
1.0

= Performance (X)
Performance (Y)

ExTime(Y)
ExTime(X)

=

n = 100 (1.5 - 1.0)
 1.0

n = 50%

RHK.S96 8

Amdahl's Law
Speedup due to enhancement E:
 ExTime w/o E Performance w/ E
Speedup(E) = ------------- = -------------------

 ExTime w/ E Performance w/o E

Suppose that enhancement E accelerates a fraction F
of the task by a factor S, and the remainder of the
task is unaffected, then:

ExTime(E) =

Speedup(E) =

RHK.S96 9

Amdahl’s Law

ExTimenew = ExTimeold x (1 - Fractionenhanced) + Fractionenhanced

Speedupoverall =
ExTimeold

ExTimenew

Speedupenhanced

=

1

(1 - Fractionenhanced) + Fractionenhanced

Speedupenhanced

RHK.S96 10

Amdahl’s Law

• Floating point instructions improved to run 2X;
but only 10% of actual instructions are FP

Speedupoverall =

ExTimenew =

RHK.S96 11

Amdahl’s Law

• Floating point instructions improved to run 2X;
but only 10% of actual instructions are FP

Speedupoverall = 1

0.95
= 1.053

ExTimenew = ExTimeold x (0.9 + .1/2) = 0.95 x ExTimeold

RHK.S96 12

Corollary: Make The
Common Case Fast

• All instructions require an instruction fetch,
only a fraction require a data fetch/store.

– Optimize instruction access over data access

• Programs exhibit locality
Spatial Locality Temporal Locality

• Access to small memories is faster
– Provide a storage hierarchy such that the most frequent

accesses are to the smallest (closest) memories.

Reg's
Cache

Memory Disk / Tape

RHK.S96 13

Occam's Toothbrush

• The simple case is usually the most frequent
and the easiest to optimize!

• Do simple, fast things in hardware and be sure
the rest can be handled correctly in software

RHK.S96 14

Metrics of Performance

Compiler

Programming
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

(millions) of Instructions per second: MIPS
(millions) of (FP) operations per second: MFLOP/s

Cycles per second (clock rate)

Megabytes per second

Answers per month
Operations per second

RHK.S96 15

Aspects of CPU Performance
CPU time = Seconds = Instructions x Cycles x Seconds

 Program Program Instruction Cycle

 Instr. Cnt CPI Clock Rate
Program

Compiler

Instr. Set

Organization

Technology

RHK.S96 17

Marketing Metrics

MIPS = Instruction Count / Time * 10^6 = Clock Rate / CPI * 10^6

• Machines with different instruction sets ?

• Programs with different instruction mixes ?

– Dynamic frequency of instructions

• Uncorrelated with performance

MFLOP/s = FP Operations / Time * 10^6

• Machine dependent

• Often not where time is spent
Normalized:

add,sub,compare,mult 1

divide, sqrt 4

exp, sin, . . . 8

RHK.S96 18

Cycles Per Instruction

CPU time = CycleTime * ∑ CPI * I
i = 1

n

i i

CPI = ∑ CPI * F where F = I
i = 1

n

i i i i

Instruction Count

“Instruction Frequency”

Invest Resources where time is Spent!

CPI = Instruction Count / (CPU Time * Clock Rate)
= Instruction Count / Cycles

“Average Cycles per Instruction”

RHK.S96 19

Organizational Trade-offs

Instruction Mix

Cycle Time

CPI

Compiler

Programming
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

RHK.S96 20

Example: Calculating CPI

Typical Mix

Base Machine (Reg / Reg)
Op Freq Cycles CPI(i) (% Time)
ALU 50% 1 .5 (33%)
Load 20% 2 .4 (27%)
Store 10% 2 .2 (13%)
Branch 20% 2 .4 (27%)
 1.5

RHK.S96 21

Base Machine (Reg / Reg)
Op Freq Cycles
ALU 50% 1
Load 20% 2
Store 10% 2
Branch 20% 2

Typical Mix

Example
Add register / memory operations:

– One source operand in memory
– One source operand in register
– Cycle count of 2

Branch cycle count to increase to 3.

What fraction of the loads must be eliminated for this
to pay off?

