GeoEnvironmental Engineering
(CE 4231)

Dr. Somenath Mondal
National Institute of Technology, Jamshedpur
Landfills

Relative Merits of Disposal Options

<table>
<thead>
<tr>
<th>Disposal Option →</th>
<th>Non-engineered Disposal</th>
<th>Sanitary Landfill</th>
<th>Composting</th>
<th>Incineration</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓ Sustainability Indicator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume reduction</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>√</td>
</tr>
<tr>
<td>Expensive</td>
<td>x</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Long term maintenance</td>
<td>√</td>
<td>√</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>By product recovery</td>
<td>x</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Adaptability to all wastes</td>
<td>√</td>
<td>√</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Adverse environmental effect</td>
<td>√</td>
<td>√</td>
<td>x</td>
<td>√</td>
</tr>
</tbody>
</table>
Landfills

Selection criteria

Technical (type, characteristics and quantity of waste, existing practices, location of disposal site, engineering material, technology)

Institutional (structures, roles and responsibilities, operational capacity, incentives)

Financial (financing and cost recovery, current revenue and expenditure, potential need for external finance for capital cost)

Social (waste picking, health and income implication, public opinions)

Environmental (short term and long term impact)
Landfills

From Dump to Sanitary Landfill

• Dump = uncontrolled dump causing hazards to human and environment

• Controlled Landfill = dump with covering of waste

• Engineered Landfill = controlled landfill + engineered measures to limit impact

• Sanitary Landfill = engineered landfill + landfill gas extraction + groundwater monitoring + highly trained staff + water treatment facility + ...
Landfills

Impacts from Dumps

• Its presence (area need, visual impact, social and economical impact)
• Transport of waste (noise and air)
• Waste attracts animals (vermins, insects)
• Waste emits landfill gas (odor, fires, global warming)
• Waste emits dust and other materials (plastic)
• Waste emits pollutant water impacting soil, surface water and groundwater (drinking water problems, food)
Landfills

Impacts from Dumps

- Landfill Gas
- Odor, Dust, Noise
- Polluted Surface
- Water
- Polluted Groundwater
- Rainwater
- Surface Water
- Leachate
- Groundwater
Landfills

Types of Engineered landfill

• Area fill
• Trench fill
• Above and below ground fill
• Canyon fill
• Slope fill
Landfills

Area fill

• Landfill progresses with little or no excavation
• Used in areas with high ground water
• Unsuitable terrain
Landfills

Trench fill

• Waste is filled in series of deep and narrow trenches
• Suitable for small waste quantities
Landfills

Above and below ground fill

- Combination of area fill and trench fill
- Excavation area is much more than trench fill
- Depth of excavation depends on position of ground water table
Landfills

Canyon fill

- Waste is filled in the valley region
- Control of surface drainage is often a critical factor
Landfills

Slope fill

• Where flat ground is not available
• Control of surface drainage from hill slopes is critical
Landfills

Life cycle of a landfill

• **Planning phase**: This typically involves preliminary hydro-geological and geo-technical site investigations as a basis for actual design.

• **Construction phase**: This involves earthworks, road and facility construction and preparation (liners and drains) of the fill area.

• **Operation phase (5 – 20 years)**: This phase has a high intensity of traffic, work at the front of the fill, operation of environmental installations and completion of finished sections.

• **Completed phase (20 – 100 years)**: This phase involves the termination of the actual filling to the time when the environmental installations need no longer be operated. The emissions may have by then decreased to a level where they do not need any further treatment and can be discharged freely into the surroundings.

• **Final storage phase**: In this phase, the landfill is integrated into the surroundings for other purposes, and no longer needs special attention.
Landfills

Systematically engineered landfill
Landfills

Systematically engineered landfill
Landfills
Landfills

Site selection

• Large enough to accommodate the SW needs of the area it serves (lifetime, 10 yrs, ...)
• Compatible with the local SW management programs
• Site must protect public health, safety, welfare, & environment
• Minimize adverse impacts on surrounding area
• Minimize adverse impacts on property value
• Minimize impacts on traffic flow
• Minimize potential for fire, spill, accidents
• e.g. outside the 100 year flood plain
• Far from airports (birds) - jet airports, other airports
• Provide emergency response plan including notification, evacuation, & containment procedures
Landfills

Site selection

- Land availability
- Haul distance
- Impact on SW management program
- Soil conditions and topography
- Geological conditions - unstable areas, seismic activity
- Hydrologic conditions (surface and ground water)
- Climatic conditions (rainfall and wind)
- Environmental and ecological conditions
- Public input and concerns
- Potential use after closure
Landfills

Area Requirements

• Leachate treatment plant
• Gas management and treatment
• Access requirements (streets, railroads, ...)
• Economics (height vs. Area of landfill)
• Co-located waste processing (recyclables processing, special wastes, household, hazardous wastes....)
• Composting of Biowaste
• Administration of the Landfill (Buildings, ...)
• Scale house (located at the Entrance)
• Stormwater control (ponds, rainwater infiltration, ...)
• C&D debris recycling and disposal
Landfills

Landfill Design Consideration

- Essential components
- Design life
- Waste volume, waste compatibility and landfill
- Landfill layout and section
- Phased operation
- Estimation of leachate quantity
- Liner system
- Leachate drainage, collection and removal
Landfills

Landfill Design Consideration

- Leachate management
- Landfill gas management
- Final cover system
- Surface water drainage system
- Base stability, slope stability and seismic aspects
- Site infrastructure
- Environmental monitoring system
- Closure and post-closure maintenance system
Landfills

Construction and operation Criteria

- Landfill site construction and development
- Site procedures: Record keeping and waste inspection
- Phase development
- Phase operation
- Pollution prevention and safety during operation
- Phase closure
- Landfill Closure
- Post-closure vegetative stabilization
Landfills

Landfill components and configuration

• Bottom and lateral side liner systems
• Leachate collection and removal system
• Gas collection and control system
• Final cover system
• Storm water management system
• Groundwater monitoring system
• Gas monitoring system
• Leak detection system
Landfills

Actions required for constructing/design of a landfill

• Landfill footprint layout
• Subbase grading
• Cell layout and filling
• Temporary cover selection
• Final cover grading
• Final cover selection
Landfills

Typical cross section of landfill
Landfills

Bottom and side liner system

- Single most important element of a landfill
- Placed at the bottom and sides of a landfill
- To prevent migration of leachate to the surrounding soil and water
- Liner consists of multiple barrier and drainage layers
- May consists of compacted clay liner, geomembrane, geosynthetic clay liner, geotextiles and/or a combination of these.
Landfills

Leachate collection and removal system

- To collect the leachate produced in a landfill

- To prevent the buildup of leachate head on the liner and to drain leachate effectively outside the landfill for treatment

Leak detection system

- To drain the leachate if at all present in the secondary liner system
Landfills

Gas collection and removal system

- Municipal solid waste can generate large quantities of gas during decomposition.
- Two primary constituents: Methane and Carbon dioxide
- System to collect and extract gas from within the landfill
- Landfill gas can either be used to produce energy or flared under controlled conditions
Landfills

Top liner system

- Enhances surface drainage, prevents infiltrating water and supports surface vegetation
- Consists of barrier and drainage layers
- Main purpose is to minimize the water infiltration into the landfill to reduce amount of leachate generated after closure
- Soil layer is included at the top to protect the underlying layers against intrusion, damage and to enhance surface drainage & vegetation
Landfills

Leachate drainage system
Landfills

Leachate collection system
Landfills

Perspective view of cell type construction
Landfills

Detailed diagram of cell construction
Landfills

Single composite liner system for non-hazardous landfill
Landfills

Double composite liner system for hazardous landfill
Landfills

Top liner system

- Surface vegetation layer
- Drainage layer
- Non-woven geotextile
- HDPE geomembrane
- Compacted clay liner
- Waste
Landfills

Details of gas venting system
Landfills

Cross-sectional view of the landfill
Landfills

Cumulative land requirement for MSW disposal
Landfills

Emissions of methane from landfills
Landfills

Groundwater control measures

• groundwater regime
• permeability and transmissivity of all strata
• distribution, thickness and depth of subsoils and bedrock
• location of wells, springs, sink and swallow holes or other groundwater features
• groundwater contours, gradients, rates of flow, and direction of flow
• groundwater quality
• predicted influence of short/long term dewatering
• relationship with surface waters
• aquifer category.
Landfills

Groundwater conditions

A. Outward Gradient

B. Inward Gradient (Zone of Saturation)

C. Perched Groundwater

D. Confined Aquifer