Introduction to JSP

JavaServer Pages (JSP) is a technology based on the Java language and enables
the development of dynamic web sites. JSP was developed by Sun Microsystems
to allow server side development. JSP files are HTML files with special Tags
containing Java source code that provide the dynamic content.

The following shows the Typical Web server, different clients connecting via the
Internet to a Web server. In this example, the Web server is running on Unix and
is the very popular Apache Web server.

Typical Web Web
server server

Client

—=
INTERNET ~———p |
-

[t [~~~

(Apache Web server)
Windows 98

First static web pages were displayed. Typically these were people’s first
experience with making web pages so consisted of My Home Page sites and
company marketing information. Afterwards Perl and C were languages used on
the web server to provide dynamic content. Soon most languages including
Visualbasic, Delphi, C++ and Java could be used to write applications that
provided dynamic content using data from text files or database requests. These
were known as CGI server side applications. ASP was developed by Microsoft to
allow HTML developers to easily provide dynamic content supported as standard
by Microsoft’s free Web Server, Internet Information Server (IIS). JSP is the
equivalent from Sun Microsystems, a comparison of ASP and JSP will be
presented in the following section.

The following diagram shows a web server that supports JSP files. Notice that the

web server also is connected to a database.

. Typical Web server
Client supporting JSP

INTERNET

stored here!

[=I
— =z |=
1]

Web
serve

r

JSP

Servlet
% Engine
JSP files el

™~

Unix

DATABASE

Oracle
Database

(Apache Web server)
Windows 98

JSP source code runs on the web server in the JSP Servlet Engine. The JSP
Servlet engine dynamically generates the HTML and sends the HTML output to the

client’s web browser.

Why use JSP?

JSP is easy to learn and allows developers to quickly produce web sites and
applications in an open and standard way. JSP is based on Java, an object-
oriented language. JSP offers a robust platform for web development.

Main reasons to use JSP:
1. Multi platform

2. Component reuse by using Javabeans and EJB.
3. Advantages of Java.

You can take one JSP file and move it to another platform, web server or JSP
Servlet engine.

Moving JSP file from one
platform to another.

Web server Web server
(Microsoft - IIS) (Apache)

=i =

= =

= =

— Moving JSP files —
JSP JsP

Servlet ‘ > Servlet

Engine Engine
Microsoft NT Unix

(JSP Servlet Engine - JRUN) (JSP Servlet Engine - Tomcat)

HTML and graphics displayed on the web browser are classed as the presentation
layer. The Java code (JSP) on the server is classed as the implementation.

By having a separation of presentation and implementation, web designers work
only on the presentation and Java developers concentrate on implementing the
application.

JSP compared to ASP

JSP and ASP are fairly similar in the functionality that they provide. JSP may have
slightly higher learning curve. Both allow embedded code in an HTML page,
session variables and database access and manipulation. Whereas ASP is mostly
found on Microsoft platforms i.e. NT, JSP can operate on any platform that
conforms to the J2EE specification. JSP allow component reuse by using
Javabeans and EJBs. ASP provides the use of COM / ActiveX controls.

JSP compared to Servlets

A Servlet is a Java class that provides special server side service. It is hard work
to write HTML code in Servlets. In Servlets you need to have lots of printin
statements to generate HTML.

JSP architecture

JSPs

are built on top of SUN’s servlet technology. JSPs are essential an HTML

page with special JSP tags embedded. These JSP tags can contain Java code. The

JSP file extension is .jsp rather than .htm or .html. The JSP engine parses the .jsp
and creates a Java servlet source file. It then compiles the source file into a class

file, this is done the first time and this why the JSP is probably slower the first

time

it is accessed. Any time after this the special compiled servlet is executed

and is therefore returns faster.

wETs%A //v le,gp

I_I Web Server

1. Web browser Request 2. JSP request sent to Web server File
3. Send to JSP Servlet Engine
9. HTML sent to browser & 4 | eee---- * -------

. JSP Servlet Engine .
4. Parse JSP file
INTERNET ' 5. Generate Servlet

+ source code

' 6. Compile Servlet
+ source code into
» class.

8. HTML (Servlet output) : 7. Instantiate Servlet.

................

Steps required for a JSP request:

1.

b

OONO

The user goes to a web site made using JSP. The user goes to a JSP page
(ending with .jsp). The web browser makes the request via the Internet.
The JSP request gets sent to the Web server.

. The Web server recognises that the file required is special (.jsp), therefore

passes the JSP file to the JSP Servlet Engine.

If the JSP file has been called the first time, the JSP file is parsed,
otherwise go to step 7.

The next step is to generate a special Servlet from the JSP file. All the
HTML required is converted to println statements.

The Servlet source code is compiled into a class.

The Servlet is instantiated, calling the init and service methods.

HTML from the Servlet output is sent via the Internet.

HTML results are displayed on the user’s web browser.

Creating your first JSP page

<html>

<head>

<title>My first JSP page

</title>

</head>

<body>

<% @ page language="java” %>

<% System.out.printin(“Hello World”); %>
</body>
</html>

Type the code above into a text file. Name the file helloworld.jsp.
Place this in the correct directory on your JSP web server and call it via your
browser.

rahimi
Typewritten Text

Using JSP tags

There are five main tags:

uhwN e

Declaration tag
Expression tag
Directive Tag
Scriptlet tag
Action tag

Declaration tag (<%! %>)

This tag allows the developer to declare variables or methods.

Before the declaration you must have <%!
At the end of the declaration, the developer must have %>

Code placed in this tag must end in a semicolon (;).

Declarations do not generate output so are used with JSP expressions or
scriptlets.

For Example,
<%!
private int counter = 0 ;

private String get Account (int accountNo) ;
%>

Expression tag (<%= %>)

This tag allows the developer to embed any Java expression and is short for
out.printin().

A semicolon (;) does not appear at the end of the code inside the tag.

For example, to show the current date and time.

Date : <%= new java.util.Date() %>

Directive tag (<% @ directive ... %>)

A JSP directive gives special information about the page to the JSP Engine.
There are three main types of directives:

1) page - processing information for this page.

2) Include - files to be included.

3) Tag library - tag library to be used in this page.

Directives do not produce any visible output when the page is requested but
change the way the JSP Engine processes the page.

For example, you can make session data unavailable to a page by setting a page
directive (session) to false.

1. Page directive

This directive has 11 optional attributes that provide the JSP Engine with special

processing information. The following table lists the 11 different attributes with a
brief description:

language Which language the file uses. <%@ page language = “java” %>
extends Superclass used by the JSP <% @ page extends =
engine for the translated Servlet. | “com.taglib..” %>
import Import all the classes in a java <%@ page import = “java.util.*”
package into the current JSP %>

page. This allows the JSP page to
use other java classes.

The following packages are
implicitly imported.
java.lang.*

javax.servlet.*
javax.servlet.jsp.*
javax.servlet.http.*

session Does the page make use of Default is set to true.
sessions. By default all JSP pages
have session data available.
There are performance benefits
to switching session to false.

buffer Controls the use of buffered <%@ page buffer = "none” %>
output for a JSP page. Default is
8kb

autoFlush Flush output buffer when full. <%@ page autoFlush = “true” %>

isThreadSafe | Can the generated Servlet deal
with multiple requests? If true a
new thread is started so requests
are handled simultaneously.

info Developer uses info attribute to <%@ page info =

add information/document for a "CS@SIUCS Department.
page. Typically used to add
author, version, copyright and
date info.

Programming Distributed Apps. " %>

errorPage Different page to deal with <%@ page errorPage =

rahimi
Typewritten Text

rahimi
Typewritten Text
"CS@SIUCS Department.
Programming Distributed Apps. " %>

rahimi
Typewritten Text

rahimi
Typewritten Text

rahimi
Typewritten Text

rahimi
Typewritten Text
<%@ page info =

rahimi
Typewritten Text

rahimi
Typewritten Text

errors. Must be URL to error “/error/error.jsp” %>
page.

IsErrorPage | This flag is set to true to make a
JSP page a special Error Page.
This page has access to the
implicit object exception (see
later).

contentType | Set the mime type and character
set of the JSP.

2. Include directive
Allows a JSP developer to include contents of a file inside another. Typically

include files are used for navigation, tables, headers and footers that are common
to multiple pages.

Two examples of using include files:

This includes the html from privacy.html found in the include directory into the
current jsp page.

<% @ include file = “include/privacy.html %>

or to include a naviagation menu (jsp file) found in the current directory.

<% @ include file = “navigation.jsp %>

3. Tag Lib directive
A tag lib is a collection of custom tags that can be used by the page.
<% @ taglib uri = “tag library URI" prefix = “tag Prefix” %>

Custom tags were introduced in JSP 1.1 and allow JSP developers to hide complex
server side code from web designers.

Scriptlet tag (<% ... %>)

Between <% and %> tags, any valid Java code is called a Scriptlet. This code can
access any variable or bean declared.

For example, to print a variable.

<%

String username = "rahimi";
System.out.printIn (username);

%>

rahimi
Typewritten Text
String username = "rahimi";

rahimi
Typewritten Text
System.out.println (username);

rahimi
Typewritten Text

rahimi
Typewritten Text

rahimi
Typewritten Text

Action tag

There are three main roles of action tags :
1) enable the use of server side Javabeans

2) transfer control between pages
3) browser independent support for applets.

Javabeans

A Javabean is a special type of class that has a number of methods. The JSP page
can call these methods so can leave most of the code in these Javabeans. For
example, if you wanted to make a feedback form that automatically sent out an
email. By having a JSP page with a form, when the visitor presses the submit
button this sends the details to a Javabean that sends out the email. This way
there would be no code in the JSP page dealing with sending emails (JavaMail
API) and your Javabean could be used in another page (promoting reuse).

To use a Javabean in a JSP page use the following syntax:

<jsp : usebean id =" " scope = “application” class = “com...” />

The following is a list of Javabean scopes:
page - valid until page completes.
request — bean instance lasts for the client request

session — bean lasts for the client session.
application — bean instance created and lasts until application ends.

Dynamic JSP Include

You have seen how a file can be included into a JSP using an Include Directive:
<% @ include file = “include/privacy.html %>

This is useful for including common pages that are shared and is included at
compile time.

To include a page at run time you should use dynamic JSP includes.

<jsp:include page="URL" flush="true" />

Creating your second JSP page

For the second example, we will make use of the different tags we have learnt.
This example will declare two variables; one string used to stored the name of a
website and an integer called counter that displays the number of times the page
has been accessed. There is also a private method declared to increment the
counter. The website name and counter value are displayed.

<HTML>

<HEAD>

<TITLE> JSP Example 2</TITLE>

</HEAD>

<BODY> JSP Example 2

<%!
String sitename = "Programming Distributed Applications";
int counter = 0;

private void incrementCounter()

{
b

counter ++;
%>

Website of the day is
<%= sitename %>

page accessed

<%= counter %>
</BODY>

</HTML>

rahimi
Typewritten Text

rahimi
Typewritten Text
String sitename = "Programming Distributed Applications";

rahimi
Typewritten Text

rahimi
Typewritten Text

rahimi
Typewritten Text

rahimi
Typewritten Text
private void incrementCounter()

rahimi
Typewritten Text

rahimi
Typewritten Text

rahimi
Typewritten Text

Implicit Objects

So far we know that the developer can create Javabeans and interact with Java
objects. There are several objects that are automatically available in JSP called
implicit objects.

The implicit objects are

Variable Of type

request javax.servlet.http.httpservletrequest
response javax.servlet.http. httpservietresponse
out javax.servlet.jsp.jspwriter

session javax.servlet.http.httpsession
pagecontent javax.servlet.jsp.pagecontext
application javax.servlet.http.servletcontext
config javax.servlet.http.servletconfig

page java.lang.object

exception java.lang.throwable

page object

Represents the JSP page and is used to call any methods defined by the servlet
class.

config object

Stores the Servlet configuration data.

request object

Access to information associated with a request. This object is normally used in
looking up parameter values and cookies.

<% String devStr = request.getParameter(“dev”); %>
Development language = <%= devStr %>

This code snippet is storing the parameter “dev” in the string devStr. The result is
displayed underneath.

The session object is covered in detail in the next section.

rahimi
Typewritten Text

Session Tracking in JSP (Session Object)

Say for example, you would like to implement a shopping cart using JSP. There
are several options you could consider:

e Cookies - a small text file stored on the client’s machine. Cookies can be
disabled in the browser settings so are not always available.

o URL rewriting - store session information in the URL. Works when
cookies are not supported but can make bookmarking of web pages a
problem because they have session specific information at the end of a

URL.
¢ Hidden form fields - HTML hidden edit boxes such as <INPUT
TYPE="HIDDEN” NAME="USERNAME” VALUE=" ... >. Every page has to

be dynamically produced with the values in the hidden field.
e Session objects - JSP Implicit object.

A session object uses a key/value combination to store information.
To retrieve information from a session,

session.getValue(“visitcounter”)
The return type of the method getValue is Object, so you will need to typecast to
get the required value. If there is not a session key with that name, a null is
returned.

To set a session key with a value,

session.putValue(“visitcounter”, totalvisits)

The third JSP example in this tutorial demonstrates the use of the session object.

JSP Comments <% -- JSP comment --%>

JSP comments are similar to HTML comments <!-- HTML Comment --> except
JSP comments are never sent to the user’s browser. HTML comments are visible
in the page source.

<html>
<head>
<title>
HTML and JSP Comments
</title>
</head>
<body>
<h2>
comments
</h2>

<!-- This HTML Comment - visible in the page source -->
<%-- This JSP comment - not visible in the page source --%>

</body>
</html>

Creating your third JSP page

This third example counts how many times a particular user visits a page. It uses
the Session object that was presented in the Implicit object section of this
tutorial.

The following are the main steps involved:

1. get the value of the session variable - visitcounter

2. if the session variable (visitcounter) is null

set the session variable to 0 and welcome the visitor.

3. if the session variable is not null (after step 2),
increment the session varaible and display the number of
visits.

<!-- session.jsp
checks to see if you have visited a page and keeps a counter.

-->
<html>
<head>
</head>

<body>

<%
// get the value of the session variable - visitcounter
Integer totalvisits = (Integer)session.getValue("visitcounter");

// if the session variable (visitcounter) is null
if (totalvisits == null)
{
// set session variable to 0
totalvisits = new Integer(0);
session.putValue("visitcounter", totalvisits);

// print a message to out visitor
out.printin("Welcome, visitor");

b

else

{
// if you have visited the page before then add 1 to the visitcounter
totalvisits = new Integer(totalvisits.intValue() + 1);
session.putValue("visitcounter", totalvisits);
out.printin("You have visited this page " + totalvisits + " time(s)!");

b

%>

</body>
</html>

Error pages

Eventually there will come a time when sometime unexpected happens. In Java
terms this is when an exception gets thrown. JSP can handle these situations so
when an exception is thrown, a default error page is sent to the browser.

So what makes an error page different from other JSP pages?

Well one of the first lines in an error page must be the page directive
isErrorPage="true”.

Inside your default error page (errorPage.jsp), above the <HTML> tag type:

<% @ page isErrorPage="true" import="java.util.*” %>
<HTML>

<BODY>

Error Occurred

<%= exception.toString() %>

</BODY>

</HTML>

Our error page also uses the exception object and the toString() method to
display a brief description of the error.

To use a specific error page in your JSP pages, again above the <HTML> tag
type:

<0/0@ page errorpagez"errorpage.jspn %>
<HTML>

This code will go to errorPage.jsp if an error occurs. Even after an error, the HTTP
session remains available.

You should now understand how to create an error page for your JSP applications.

Using JavaBeans with JSP

We have already mentioned JavaBeans in the Action Tag section. This section will
provide a detailed look into how to use JavaBeans with JSP.

What is a JavaBean?

A JavaBean is a Java class with a few constraints:
e Must have a no argument constructor.
e Must follow a naming convention for get/set methods.
e Must implement the Serializable interface (not required for JSP)

Let’s create a simple JavaBean that stores Employee data.

package com.visualbuilder.beans;

public class Employee

{

private String _name;

public String getName()
{

return _name;

b

public void setName(String name)

{

_nhame = name;
b
b

Next we will access the properties of the JavaBean from a JSP.

<html>
<head>
<title>
Using JavaBeans from JSP
</title>
</head>
<body>

<jsp:useBean id="staff” class=" com.visualbuilder.beans.Employee " />

<jsp: setProperty name="staff” property="name” value="James Brown” />
Welcome to the company, <jsp:getProperty name="staff” property="name” />
<%= staff.getName() %>, please visit to get more out of life!

</body>
</html>

rahimi
Typewritten Text

rahimi
Typewritten Text

The benefit of using JavaBeans is that you can easily reuse the code in other
applications. It also minimises the amount of code in the JSP, allowing designers
to use their favorite web design editor without destroying the Java code. This
follows a component centric approach to developing applications.

	JSP tutorial
	Introduction to JSP
	Why use JSP?
	JSP compared to ASP
	JSP compared to Servlets
	JSP Architecture
	Setting up a JSP environment
	Creating your first JSP page
	Using JSP tags
	Declaration tag
	Expression tag
	Directive tag
	Scriptlet tag
	Action tag
	Creating your second JSP page
	Implicit Objects
	Session Tracking in JSP
	JSP Comments
	Creating your third JSP page
	Error pages
	Using JavaBeans with JSP
	Feedback

